Popular Music Lyrics Have Become More Negative Over the Decades

This post is guest-written by Alex Lacey, a student at The Ohio State University. It was inspired by the ideas (and used some of the code) from this previous Big-Ish data post.

Popular music is constantly evolving, and the changes it has undergone over the last few decades are quite significant. In this project, I have investigated the changes in sentiment (the positivity/negativity) of popular music lyrics since the 1950s. I wanted to know: has the sentiment of song lyrics evolved along with other musical changes?

For this sentiment analysis, I used four open-source lexicons: AFINN, NRC, Bing, and Syuzhet, all of which were developed by separate research teams. There lexicons, which each comprise of a large set of words and their corresponding human-rated sentiment scores (the positivity/negativity of each word) are all available in the R syuzhet package. Each method works in the same way: a full block of text (which, in this case, represents all of the lyrics of a given song) is separated into individual words based on spacing and punctuation. Each word is examined for its presence in the lexicon; if it is present, then that word is assigned its corresponding score in the lexicon, but if it is not present, the word is not assigned a score. After that, all of the available word-scores in a block of text are averaged to produce a sentiment score for the full block of text.

But what data is necessary to answer this question? What exactly defines the “popularity” of music? This is a subjective concept, so I used two separate (albeit somewhat overlapping) definitions as a proxy for popularity: best-selling songs and best-selling artists.

Best-Selling Songs

For data about the most popular songs, I used a dataset containing the 100 top-selling songs of each year from 1956 to 2015. That dataset was created by Kaylin Walker, a Statistics Masters Student at Concordia College, and it can be downloaded here.
I analyzed every song in the dataset – 5100 total – with all four Sentiment Analysis methods discussed above. However, comparing the scores of songs for each method was not initially possible: the methods have different scales and some methods might rate songs more positively or negatively than others in general. To solve this problem, the sentiment values for each method were converted to z-scores, meaning that the full set of song-scores were centered (so that the mean sentiment score equals 0) and then scaled (so that the standard deviation equals 1). This allows for the four lexicons to be compared against each other accurately. As an representative example, here are the results from the AFINN lexicon, with a simple regression line:

afinn_top_100

There is a statistically significant downward trend here, and interestingly, it seems to be caused not by the majority of songs, but by a minority of songs in recent decades that are highly negative. There is a great increase in the variance in the sentiment of popular songs, primarily in the downward direction. It is quite interesting that for many years, not one popular song was more than 4 standard deviations below the average, but starting in the 1990’s, this became relatively commonplace.

These same trends are reflected in all four sentiment lexicons (all of them are statistically significant):

multiplot_songs

But perhaps the highly-negative songs in recent years weren’t actually the most popular; of the top 100 for any given year, most people don’t hear the bottom 50 very often, and likely won’t be able to recognize them. I thought that maybe the songs with negative lyrics populate the lower rankings of the Top 100, perhaps greatly enjoyed by a counter-culture but not by most people (in general, genres like punk and metal often fall into this category). Whether or not a devoted cult-following constitutes “popularity” is up for debate, but it would be unfair to make final conclusions about changes in popular music based only on counter-cultures. To test only the hyper-recognizable and undeniably “popular” songs, I decided to do the same analysis on specifically the Top 10 most popular songs from each year, as opposed to the Top 100. The z-scores of the results from the AFINN lexicon are shown in the graph below. I included differential opacity-weighting for the songs as well (the most popular songs are a darker shade).

afinn_top_10

The initial observation holds true; there is still a significant drop in the negativity of the most-negative songs after 1990. This trend was found with all four sentiment analysis methods:

multiplot_songs_top10 

Most Popular Artists

Along with the most-popular songs, I also investigated lyrics from the most-popular artists, using their entire discography. This could augment the prior analysis by providing a clearer picture of everything written by the most influential lyricists, not just their songs on the radio. The list of 100 best-selling artists came from this list on Wikipedia. The specific years, which were assigned by the Wikipedia list, refer to the date in which each artist released their first charted single.To obtain the lyrics of each artist, I scraped Genius.com using Python code by Jack Schultz in this Big-Ish data post, in which he did a very interesting analysis of country music. Here are the AFINN lexicon results, the size of which represent the amount of sales, and the colors of which represent the genre of music:

graph1
Roughly the same trend is observed as the analysis of the most popular songs (and in case you’re interested, the red dot that is six standard deviations below the average is Eminem). Just like before, here are the results for all four methods (note that to accurately portray most of the points, the graphs were all cropped, which resulted in the removal of a couple of artists above 1.75 standard deviations and a handful of artists below 1.75 standard deviations):

multiplot

However, in consideration of these results, it is very important to note that increasingly-negative lyrics is not necessarily a bad thing. In fact, I believe the opposite: this is a demonstration of popular art becoming more interesting, more honest, more meaningful, and a better representation of the human condition. Music has continuously diversified and reinvented itself, and this is reflected in the lyrics too.

In the future, I plan to also investigate the sentiment of these lyrics with IBM’s Watson, specifically the AlchemyLanguage API. This would be particularly useful because it is a non-lexicon-based method (it considers how the words are arranged, not just the words themselves). This can be quite important. For example, lets briefly examine the phrase “I am not happy”, which we should all agree is an overall negative statement. The lexicon-based methods would likely give that phrase a positive sentiment score, because the first three words are relatively neutral, and the last word is quite positive. On the other hand, more advanced methods (such as IBM’s Watson), are able to understand that “not happy” is the opposite of happy, and they would likely classify the phrase correctly. However, even with the lexicon-based methods used in this analysis, I can assume with an acceptable degree of confidence that the results will be the same due to the relatively large amount of data.

 

A Practical Use For Python Decorators — Logging, Error Checks, and Timing

When using a Python decorator, especially one defined in another library, they seem somewhat magical. Take for example Flask’s routing mechanism. If I put some statement like @app.route("/") above my logic, then poof, suddenly that code will be executed when I go to the root url on the server. And sure, decorators make sense when you read the many tutorials out there that describe them. But for the most part, those tutorials are just explaining what’s going on, mostly by just printing out some text, but not why you might want to use a decorator yourself.

I was of that opinion before, but recently, I realized I have the perfect use for a decorator in a project of mine. In order to get the content for Product Mentions, I have Python scrapers that go through Reddit looking for links to an Amazon product, and once I find one, I gather up the link, use the Amazon Product API to get information on the product. Once that’s in the database, I use Rails to display the items to the user.

While doing the scraping, I also wanted a web interface so I can check to see errors, check to see how long the jobs are taking, and overall to see that I haven’t missed anything. So along with the actual Python script that grabs the html and parses it, I created a table in the database for logging the scraping runs, and update that for each job. Simple, and does the job I want.

The issue I come across here, and where decorators come into play, is code reuse. After some code refactoring, I have a few different jobs, all of which have the following format: Create an object for this job, commit it to the db so I can see that it’s running in real time, try some code that depends on the job and except and log any error so we don’t crash that process, and then post the end time of the job.

def gather_comments():
  scrape_log = ScrapeLog(start_time=datetime.now(), job_type="comments")
  session.add(scrape_log)
  session.commit()

  try:
    rg = RedditGatherer()
    rg.gather_comments()
  except Exception as e:
    scrape_log.error = True
    scrape_log.error_message = e.message

  scrape_log.end_time = datetime.now()
  session.add(scrape_log)
  session.commit()

def gather_threads():
  scrape_log = ScrapeLog(start_time=datetime.now(), job_type="threads")
  session.add(scrape_log)
  session.commit()

  try:
     rg = RedditGatherer()
     rg.gather_threads()
  except Exception as e:
    scrape_log.error = True
    scrape_log.error_message = e.message

  scrape_log.end_time = datetime.now()
  session.add(scrape_log)
  session.commit()

If you know a bit about how decorators work, you can already see how perfect an opportunity using this concept is here, because decorators allow you to extend and reuse functionality on top of functions you already use. For me, I want to log, time, and error check my scraping, and reusing the same code is not ideal. But a decorator is. Here’s how to write one.

Decorator Time

First thing to do, is write a function, that takes a function as parameter and call that function at the appropriate time. Since the work of the functions above is done with the same format, this turns out really nice.

Continue reading

Running Python Background Jobs with Heroku

Recently, I’ve been working on a project that scrapes Reddit looking for links to products on Amazon. Basically the idea being that there’s valuable info in what people are linking to and talking about online, and a starting point would be looking for links to Amazon products on Reddit. And the result of that work turned into Product Mentions.

To build this, and I can talk more about this later, I have two parts. First being a basic Rails app that displays the products and where they’re talked about, and the second being a Python app that does the scraping, and also displays the scraping logs for me using Flask. I thought of just combining the two functionalities at first, but decided It was easier in both regards to separate the two functionalities. The scraper populates the database, and the Rails app displays what’s in there. I hosted the Rails app on Heroku, and after some poking around, decided to also run the Python scraper on Heroku as well (for now at least!)

Also, if at this point, you’re thinking to yourself, “why the hell is he using an overpriced, web app hosting service like Heroku when there are so many other options available?” you’re probably half right, but in terms of ease of getting started, Heroku was by far the easiest PaaS to get this churning. Heroku is nice, and this set up is really simple, especially compared to some of the other PaaS options out there that require more configuration. You can definitely look for different options if you’re doing a more full web crawl, but this’ll work for a lot of purposes.

So what I’m going to describe here today, is how I went about running the scrapers on Heroku as background jobs, using clock and worker processes. I’ll also talk a little about what’s going on so it makes a little more sense than those copy paste tutorials I see a lot (though that type of tutorial from Heroku’s docs is what I used here, so I can’t trash them too badly!).

worker.py

First file you’re going to need here is a worker file, which will perform the function that it sees coming off a queue. For ease, I’ll name this worker.py file. This will connect to Redis, and just wait for a job to be put on the queue, and then run whatever it sees. First, we need rq the library that deals with Redis in the background (all of this is assuming you’re in a virtualenv

$ pip install rq
$ pip freeze > requirements.txt

This is the only external library you’re going to need for a functioning worker.py file, as specified by the nice Heroku doc. This imports the required objects from rq, connects to Redis using either an environment variable (that would be set in a production / Heroku environment), creates a worker, and then calls work. So in the end, running python worker.py will just sit there waiting to get jobs to run, in this case, scraping Reddit. We also have ‘high’ ‘default’ and ‘low’ job types, so the queue will know which ones to run first, but we aren’t going to need that here.

import os

import redis
from rq import Worker, Queue, Connection

listen = ['high', 'default', 'low']

redis_url = os.getenv('REDISTOGO_URL', 'redis://localhost:6379')

conn = redis.from_url(redis_url)

if __name__ == '__main__':
 with Connection(conn):
 worker = Worker(map(Queue, listen))
 worker.work()

clock.py

Now that we have the worker set up, here’s the clock.py file that I’m using to do the scraping. Here, it imports the conn variable from the worker.py file, uses that to make sure we’re connected to the same Redis queue. We also import the functions that use the scrapers from run.py, and in this file, create functions that will enqueue the respective functions.  Then we use apscheduler to schedule when we want to call these functions, and then start the scheduler. If we run python clock.py, we scheduler will run in perpetuity (hopefully), and then will call the correct code on the intervals we defined.

Continue reading

Classifying Amazon Reviews with Scikit-Learn — More Data is Better Turns Out

Last time, I went through some basics of how naive Bayes algorithm works, and the logic behind it, and implemented the classifier myself, as well as using the NLTK. That’s great and all, and hopefully people reading it got a better understanding of what was going on, and possibly how to play along with classification for their own text documents.

But if you’re looking to train and actually deploy a model, say, a website where people can copy paste reviews from Amazon and see how our classifier performs, you’re going to want to use a library like Scikit-Learn. So with this post, I’ll walk through training a Scikit-Learn model, testing various classifiers and parameters, in order to see how we do, and also at the end, will have an initial, version 1, of a Amazon review classifier that we can use in a production setting.

Some notes before we get going:

  • For a lot of the testing, I only use 5 or 10 of the full 26 classes that are in the dataset.
  • Keep in mind, that what works here might not be the same for other data sets. We’re specifically looking at Amazon product reviews. For a different set of texts (you’ll also see the word corpus being thrown around), a different classifier, or parameter sets might be used.
  • The resulting classifier we come up with is, well, really really basic, and probably what we’d guess would perform the best if we guessed what would be the best at the onset. All the time and effort that goes into checking all the combinations
  • I’m going to mention here this good post that popped up when I was looking around for other people who wrote about this. It really nicely outlines going how to classify text with Scikit-learn. To reduce redundancy, something that we all should work towards, I’m going to point you to that article to get up to speed on Scikit-learn and how it can apply to text. In this article, I’m going to start at the end of that article, where we’re working with Scikit-learn pipelines.

As always, you can say hi on twitter, or yell at me there for messing up as well if you want.

How many grams?

First step to think about is how we want to represent the reviews in naive Bayes world, in this case, a bag of words / n-grams. In the other post, I simply used word counts since I wasn’t going into how to make the best model we could have. But besides word counts, we can also bump up the representations to include something called a bigram, which is a two word combos. The idea behind that is that there’s information in two word combos that we aren’t using with just single words. With Scikit-learn, this is very simple to do, and they take care of it for you. Oh, and besides bigrams, we can say we want trigrams, fourgrams, etc. Which we’ll do, to see if that improves performance. Take a look at the wikipedia article for n-grams here.

For example is if a review mentions “coconut oil cream”, as in some sort of face cream (yup, I actually saw this as a mis-classified review), simply using the words and we might get a classification of food since we just see “coconut” “oil” and “cream”. But if we use bigrams as well as the unigrams, we’re also using “coconut oil” and “oil cream” as information. Now this might not get us all the way to a classification of beauty, but it could tip us over the edge.

Continue reading

Practical Naive Bayes — Classification of Amazon Reviews

If you search around the internet looking for applying Naive Bayes classification on text, you’ll find a ton of articles that talk about the intuition behind the algorithm, maybe some slides from a lecture about the math and some notation behind it, and a bunch of articles I’m not going to link here that pretty much just paste some code and call it an explanation.

So I’m going to try to do a little more here, by hopefully writing and explaining enough, is let you yourself write a working Naive Bayes classifier.

There are three sections here. First is setup, and what format I’m expecting your text to be in for the classification. Second, I’ll talk about how to run naive Bayes on your own, using slow Python data structures. Finally, we’ll use Python’s NLTK and it’s classifier so you can see how to use that, since, let’s be honest, it’s gonna be quicker. Note that you wouldn’t want to use either of these in production, so look for a follow up post about how you might go about doing that.

As always, twitter, and check out the full code on github.

Setup

Data from this is going to be from this UCSD Amazon review data set. I swear one of the biggest issues with running these algorithms on your own is finding a data set big and varied enough to get interesting results. Otherwise you’ll spend most of your time scraping and cleaning data that by the time you get to the ML part of the project, you’re sufficiently annoyed. So big thanks that this data already exists.

You’ll notice that this set has millions of reviews for products across 24 different classes. In order to keep the complexity down here (this is a tutorial post after all), I’m sticking with two classes, and ones that are somewhat far enough different from each other to show that classification works, we’ll be classifying baby reviews against tools and home improvement reviews.

Preprocessing

First thing I want to do now, after unpacking the .gz file, is to get a train and test set that’s smaller than the 160,792 and 134,476 of baby and tool reviews respectively. For purposes here, I’m going to use 1000 of each, with 800 used for training, and 200 used for testing. The algorithms are able to support any number of training and test reviews, but for demonstration purposes, we’re making that number lower.

Check the github repo if you want to see the code, but I wrote a script that just takes the full file, picks 1000 random numbers, segments 800 into the training set, and 200 into the test set, and saves them to files with the names “train_CLASSNAME.json” and “test_CLASSNAME.json” where classname is either “baby” or “tool”.

Also, the files from that dataset are really nice, in that they’re already python objects. So to get them into a script, all you have to do is run “eval” on each line of the file if you want the dict object.

Features

There really wasn’t a good place to talk about this, so I’ll mention it here before getting into either of the self, and nltk running of the algorithm. The features we’re going to use are simply the lowercased version of all the words in the review. This means, in order to get a list of these words from the block of text, we remove punctuation, lowercase every word, split on spaces, and then remove words that are in the NLTK corpus of stopwords (basically boring words that don’t have any information about class).

from nltk.corpus import stopwords
STOP_WORDS = set(stopwords.words('english'))
STOP_WORDS.add('')
def clean_review(review):
  exclude = set(string.punctuation)
  review = ''.join(ch for ch in review if ch not in exclude)
  split_sentence = review.lower().split(" ")
  clean = [word for word in split_sentence if word not in STOP_WORDS]
  return clean

Realize here that there are tons of different ways to do this, and ways to get more sophisticated that hopefully can get you better results! Things like stemming, which takes words down to their root word (wikipedia gives the example of “stems”, “stemmer”, “stemming”, “stemmed” as based on “stem”). You might want to include n-grams, for an n larger than 1 in our case as well.

Basically, there’s tons of processing on the text that you could do here. But since this I’m just talking about how Naive Bayes works, I’m sticking with simplicity. Maybe in the future I can get fancy and see how well I can do in classifying these reviews.

Ok, on to the actual algorithm.

Continue reading

Classifying Country Music Songs is an Art — Getting Training Data

If you’ve been following along recently, I’ve been writing about my theory of country music, and how unlike most other genres out there, country music song topics are, let’s just say, much more centralized. And so in my continuing effort to automatically classify the country songs topic, I need to take all the songs lyrics I downloaded, and manually classify them so I have some training data.

This is actually the third post on this topic I’ve written. In the first post where I showed how to get song lyrics using Genius’s API and scraping, and then the second post, where I gathered up all the lyrics from country artists, removed the duplicates, and realized that Lee Brice talks about beer and trucks much more than he does about love. The stats I ran at the end of the second entry are fine and all, but really what I have at the moment is some 5 thousand songs that are uncategorized, which isn’t going to allow me to do any more sophisticated classification than simple word analysis.

What this means is I’m going to need some help classifying those 5000 songs. To do this, I wrote a rails app deployed on Heroku free mode that will allow anyone to sign up and help with this task. Obviously I’m not expecting people to get through all 5000 themselves (other than me of course), but hopefully if I can get enough people to do more than a few songs, I can get a good representation from which I can get interesting results.

Rest of the article is as follows. First, I’ll have a section where I talk about my theory of country music song topics, which I’ve been annoying my friends by talking about whenever we talk about country music. Then in the next / last section, I’ll talk about how I’m looking to get these songs classified, and what the interface is like and what’s going on behind the scenes.

As an aside, I am somewhat of a fan of country music. I usually just say it’s pop music with a slide, and by definition, pop music is catchy. But still, those country song lyrics can get quite ridiculous () which is definitely fun to laugh at.

Also, follow me along on twitter for more updates on this, and other topics.

Country Music Song Topics

Topic 1: Love

Love. The classic song topic — universally relatable, unbounded in subtopics, and somewhat of a default topic for any story, song or otherwise.Now that I think about it, I’m not sure there’s any song genre out there that doesn’t have love as a main song topic. So it makes sense that love is quite prevalent in many of the country songs.

Whether happy songs, about how Brett Young can’t go to sleep unless his girl is next to him at night,

or sad songs, about how the guy in Billy Currington’s song, “It Don’t Hurt Like It Used To”, was broken up with, but got over it eventually. Or somewhat, cause it still hurts.

Now that I think about it, I’m not sure there’s any song genre out there that doesn’t have love as a main song topic.

Topic 2: Small Town Life

Nothing says small town life like boots, dirt roads, dumpy bars with a cover band, railroad tracks, barns, white churches, and crop fields. No, I’m not making this up, those are just some of the things the band LoCash sings about in their recent song titled “I Love this Life”

If that wasn’t enough, how about picket fences, blue sky and green grass, old Ford trucks, back porches, homemade wine, tire swings, fireworks, and dead deer heads waiting to be hung on the wall. Yup, that’s just what Drake White is singing about in his song “Livin’ The Dream”. I admit, if I hear this when scrolling through stations on the radio in my car that doesn’t have an aux port, I’ll turn it up.

Continue reading

Talkin’ ‘Bout Trucks, Beer, and Love in Country Songs — Analyzing Genius Lyrics

Trucks, beer, and love, all things that make country music go round. I’ve said before that country music is just pop music with a slide, and then lyrics about slightly different topics than what you’ll hear in hip hop or “normal” pop music on the radio.

In my continuing quest to validate my theory that all country songs can fit into one of four different topics, in this post, I go through lyrics to see which artists talk about trucks, beer, and love the most. In my first post on this topic, I talked about how to get song lyrics from genius and print them out on the command line.

The goal here, and what I’m going to walk you through, is how I stored stored info and lyrics for all the songs for the country artists, how I made sure that all the lyrics were unique, and then ran some stats on the songs. Another note before we go is that a lot of data work is just janitorial. The actual code for getting “interesting” results is fairly simple. The key it to enjoy doing the janitor-style coding and then you’ll be good.

If you’re interested in which country music people talk most about trucks, beer, alcohol, or small towns, skip to the end where I list out some stats. For the rest, here’s some code.

https://www.pinterest.com/pin/59180182578213991/

I wonder how they feel about beer trucks. I’m guessing they’d all be fans of them.

Step 1 — Save the Lyrics!

When doing anything with web scraping, the one thing to always, always keep in mind here, is that you want to avoid hitting the server for as little as possible. With that in mind, we’re going to do here is assume the inputs are names of artists. For each of those artists, find all of their songs, and then for each of those songs, grab the lyrics in the way that I did in the first post, and then save them locally along with some meta information the API provides.

Now when I post the following code, don’t imagine that I knew what I wanted . Everything in here was created iteratively. Here’s a list of all the features of this piece of code does that were created iteratively.

Directory structure — Within the folder that contains the main .py file, there’s a folder named artists. And within that folder, when the code runs, a folder with the artist’s name is created (if not already). And within that folder, there are two more folders, info and lyrics. When we run the code, I put the lyrics in /artists/artist_name/lyrics/Song Title.txt and the info from the API, containing information about the song, like annotations, title, and song API id so we can grab it again if need be, in the file /artists/artist_name/info/Song Title.txt. The key, again, being saving all the info given to avoid unnecessary requests.

Redundancy Checking — Along with making sure to save all the info given, if we run an artist for the second time, we don’t want to get lyrics that we already have. So once we have all the songs for that artist, I run a check to see if we have a file with the name of the song already, and that the file isn’t empty. If the file is there, we continue to the next song.

Lyric Error Checking — Ahh unicode. While great for allowing multitudes of different characters rather than the standard English alphabet along with a few specialty characters, they’re not ideal when I’m trying to deal with simple song lyrics. And when saving the lyrics, I encountered more than a few random, unnecessary characters that Python threw errors for encoding problems. In a semi-janky rule-based solution (which isn’t great to use, see below), when I saw these errors being thrown, I would specifically replace them with the correct “normal” character. I assume there’s some library out there that would take care of all the encoding issues, but this worked for me. Also, on Genius’s end, it would be sweet if they, you know, checked for abnormal characters when lyrics were uploaded and didn’t have them in the first place. Also would be cool if they included the lyrics in the API.

def clean_lyrics(lyrics):
  lyrics = lyrics.replace(u"\u2019", "'") #right quotation mark
  lyrics = lyrics.replace(u"\u2018", "'") #left quotation mark
  lyrics = lyrics.replace(u"\u02bc", "'") #a with dots on top
  lyrics = lyrics.replace(u"\xe9", "e") #e with an accent
  lyrics = lyrics.replace(u"\xe8", "e") #e with an backwards accent
  lyrics = lyrics.replace(u"\xe0", "a") #a with an accent
  lyrics = lyrics.replace(u"\u2026", "...") #ellipsis apparently
  lyrics = lyrics.replace(u"\u2012", "-") #hyphen or dash
  lyrics = lyrics.replace(u"\u2013", "-") #other type of hyphen or dash
  lyrics = lyrics.replace(u"\u2014", "-") #other type of hyphen or dash
  lyrics = lyrics.replace(u"\u201c", '"') #left double quote
  lyrics = lyrics.replace(u"\u201d", '"') #right double quote
  lyrics = lyrics.replace(u"\u200b", ' ') #zero width space ?
  lyrics = lyrics.replace(u"\x92", "'") #different quote
  lyrics = lyrics.replace(u"\x91", "'") #still different quote
  lyrics = lyrics.replace(u"\xf1", "n") #n with tilde!
  lyrics = lyrics.replace(u"\xed", "i") #i with accent
  lyrics = lyrics.replace(u"\xe1", "a") #a with accent
  lyrics = lyrics.replace(u"\xea", "e") #e with circumflex
  lyrics = lyrics.replace(u"\xf3", "o") #o with accent
  lyrics = lyrics.replace(u"\xb4", "") #just an accent, so remove
  lyrics = lyrics.replace(u"\xeb", "e") #e with dots on top
  lyrics = lyrics.replace(u"\xe4", "a") #a with dots on top
  lyrics = lyrics.replace(u"\xe7", "c") #c with squigly bottom
  return lyrics

Check out the most of the main function below. If you’re looking for the actual full file, check out this gist. It’s easier to post that on Github than formatting the entire thing here.

Continue reading